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The dissipative steady state far from equilibrium and subject to a slow 
modulation of external parameters is analyzed. It is shown that the time- 
integrated energy dissipation consists of three terms. The first of these is 
irreversible and consists of the time-integrated dissipation of the sequence of 
exact steady states defined by the externally controlled parameters traversed 
during the modulation. The second term is reversible and reflects the fact 
that the dissipation of the time-dependent modulated system, as calculated 
in a macroscopic way from ensemble averages, is not the same as the dissipa- 
tion of a sequence of exact steady states. The third term is also reversible and 
relates to the ensemble dispersion in changes in stored energy during the 
modulation. If the system has a single degree of freedom and narrow fluctua- 
tions, then these fluctuations can be characterized by an effective temperature 
Tar. The third term can then be shown to be equal to Tn dS, where S is the 
entropy calculated from the distribution function by the usual definition. 

KEY WORDS:  Entropy; steady state; fluctuations; dissipative systems; 
noise temperature. 

1. I N T R O D U C T I O N  

This paper  will present  a general izat ion o f  the second law o f  thermodynamics ,  

dS  = dQ/T,  to some systems which are very simple in some ways, but  can be 

very f a r  f rom equil ibrium. Our  in t roductory  mater ia l  relates the subsequent  

details to earlier work  in each o f  two fields, and tries to make  our  mot iva t ion  

evident.  Firs t  o f  all we will relate our  results to work  in recent years on the 

steady state in dissipative systems far  f r o m  equil ibrium. Second, we will 
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relate the work to a more narrow community of papers, stemming largely 
from this author's laboratory, and dealing with the physical limits of the 
computational process, i.e., the interaction of  information streams. 

The relationship presented here was first put forth in detail in an earlier 
paper.m In the present paper we would like to make that material clearer, and 
correct an error in the earlier discussion. While the earlier paper is believed to 
be entirely correct in its analytical details, there was a point of confusion in 
the accompanying verbal interpretation. Furthermore, we shall not try to 
cover the full range of cases discussed in the original paper. 

1.1. Dissipative Systems Far from Equilibrium 

There has been a great deal of concern in recent years with the behavior 
of dissipative systems which are far from equilibrium and exhibit some kind 
of  organized behavior. A conference C2~ was devoted to these topics and 
showed a diversity of approaches and motivations leading to somewhat 
related descriptions. Much of the work in this field has been concerned with 
the construction of analogies between distribution functions characterizing 
nonequilibrium systems and the more familiar exp(--/~H) characterizing 
equilibrium systems. The cited conference proceedings and a review paper 
currently in preparation, c~ as well as a forthcoming book, 14~ provide system- 
atic expositions of these concepts, with an emphasis on cooperative 
phenomena. The work in Refs. 2-4 is distinguished from much of the earlier 
work in irreversible statistical mechanics, and also from the early work of 
Prigogine and collaborators, by its emphasis on the details of the distribution 
function, which in turn depend on the fluctuations in the system. Later work 
by Prigogine and collaborators has, however, been concerned with fluctua- 
tions and distribution functions. ~5,6) The cited discussions c2-4~ concentrate on 
systems which either exhibit detailed balancing, even in the absence of equi- 
librium, or which can easily be manipulated into a form where this is true. 
It is still unclear (to this author, at least) whether this is a terribly serious 
restriction, permitting easy characterization of  only a few particularly 
fortunate cases, or whether the techniques are in fact a widely applicable tool. 

It is important to note that the use of the macroscopic equations for the 
time development of a system, without regard for fluctuations, does not 
permit us to discriminate between metastability and absolute stability; a 
system without fluctuations will just stay in a metastable state once it is 
placed there. As an example, consider the tunnel diode circuit of Fig. 1. This 
circuit contains a battery, a resistance, and a tunnel diode in series. For the 
purposes of this discussion the details of tunnel diode physics are not relevant. 
A tunnel diode has an i(V) characteristic, exhibiting a negative resistance 
(di/dV < 0) as shown in the solid curve of  Fig. l(b). The dashed line in 
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Fig. 1. Tunnel  diode fed th rough  
series resis tance R. V is the  potential  
across  the  diode. A and  C are  locally 
stable, B is unstable.  

Fig. 1 (b), the "load line," gives the current through the resistor, for a fixed 
battery voltage EB, as a function of the voltage V at the junction of resistor 
and tunnel diode. The two characteristics intersect in three points; two of 
these are points of relative stability, and one is unstable. These conclusions 
about stability result from the time-dependent macroscopic equations of 
motion of this system, which in turn depend on the energy-storing degrees of  
freedom. In the example shown there is only one degree of freedom, the 
capacitance of  the tunnel diode. 

Once the macroscopic kinetics of a system is understood it is not hard to 
answer questions about local stability or instability. To do that, one only has 
to examine the linearized equations of  motion for small deviations from the 
state under consideration and must ask whether such deviations grow or 
decay. It is not clear to this author why there is such a strong concern else- 
where with stability criteria related to entropy or entropy generation. These 
criteria in the final analysis depend on the same macroscopic equations of  
motion. 

To decide, however, which of the two states of relative stability, A and C 
in Fig. 1, is really favored, we have to go beyond the macroscopic equations 
of motion. Once we have a description of  the stochastic behavior of the 
system we can find the steady-state distribution function, giving the relative 
probability of finding the system near A versus the probability of  finding it 
near C. We can, however, also go beyond that and describe the relaxation 
rate toward that steady-state distribution. This depends upon the rate of 
transition between A and C over the "barrier" at B, much as in a thermally 
activated atomic jump over a saddle point between favored lattice sites. These 
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Fig. 2. (a) Tunnel diode characteristics, 
showing favored steady states by a heavy 
line. The lighter solid line shows states 
which are only metastable, while the dashed 
part of the i - V  characteristic shows states 
which are unstable. (b) The very similar 
situation for a liquid-gas isotherm. 

general points have been understood in connection with electronic systems ~7's~ 
for over a decade. 

One can thus arrive at a picture of stability, metastability, and instability 
for the tunnel diode circuit which is illustrated schematically in Fig. 2. 
Figure 2 shows behavior under varying battery voltage En and is only 
intended as a qualitative illustration, not as a result of exact calculations. 
Figure 2 stresses the similarity to a gas-liquid isotherm. 

The circuit of Fig. 1, exactly as sketched, does not strictly satisfy detailed 
balance, as pointed out in the appendix. A circuit which is readily tractable 
by the methods we have discussed (2-4~ is obtained by replacing the resistance 
by a device which, just like the tunnel diode, passes one whole electron at a 
time. This could then, for example, be another tunnel diode, or a thermionic 
diode, or an insulating layer which transmits by tunneling. Since these latter 
circuits, however, lead to circuit diagrams which are less familiar and less 
suggestive, we have invoked the resistor in the abbreviated discussion 
given above. More details concerning this will be found in the appendix. 

The relationship d S  = d Q / T ,  to be proven for steady-state dissipative 
systems under a slow change of parameters, will extend the analogies (2-4) and 
give them a more physical and thermodynamic significance. The relationship 
d S  = d Q / T  tell us, for example, that entropy reduction in equilibrium is 
accompanied by a heat transfer to the thermal environment. We shall show 
that for a very limited variety of dissipative systems there is a similar relation. 
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I f  we vary the parameters of the system slowly and in such a fashion as to 
narrow the system's range of  allowed behavior, then there will be an asso- 
ciated reversible heat flow to the environment. 

1.2. I N F O R M A T I O N  P R O C E S S I N G  

Systems with two states of local stability are, of course, the components 
out of which computers are built. A concern with the ultimate physical 
limitations of  computers has been one of the motivations for the studies 
discussed in this paper. Information handled in computers, in biological 
systems, or even by pencil and paper inevitably utilizes real physical degrees 
of freedom. Thus information is not a disembodied philosophical or mathe- 
matical entity, and is subject to physical restrictions. The attempt to under- 
stand these restrictions is still in its infancy. ~9,z~ A chief concern has been to 
find the minimum energy expenditure required in the computational process. 
This is most easily discussed in systems in which information can be held in 
locally stable states without requiring continuous energy dissipation and 
where energy dissipation is only required when information is changed. 
Systems of this sort are exemplified by magnetic cores which can be magne- 
tized in one of two directions, or by a particle in a bistable potential well. 

In the existing discussions 19,z~ it has been shown, through phase-space 
arguments, that operations which throw away information, i.e., operations 
which do not allow a deduction of  the input from the output, require energy 
dissipation. The amount of the dissipation depends upon the particular 
logical function being executed, but for typical elementary logic functions is 
of order kT. This author has furthermore argued that operations which throw 
away information are essential to a computer. In a very remarkable recent 
paper Bennett m) has shown that, in fact, computers need not throw away 
any information. Let us here briefly try to describe the spirit of  his argument. 
Consider a two-input, one-output function, such as the logical "and",  whose 
output is "1"  if and only if both inputs are "1 ." Clearly it is logically irrever- 
sible, and therefore (9,~~ also physically irreversible and dissipative. Now, 
however, let us supplement the needed "and"  output by two other outputs 
which simply replicate the inputs. Or, to put it more generally: provide enough 
added output to permit us to go back in a one-to-one fashion from output to 
input. Such a one-to-one mapping of input into output can be performed by 
a dissipationless mechanism, simply following along its dynamic trajectories. 

Now, however, we are left with extra, unnecessary, outputs. These 
cannot be thrown away; that requires energy dissipation. The extra outputs 
must therefore be fed into a shift register 2 or some other sort of memory. At 

2 A shift register is a storage device which, as its name implies, shifts information along a 
linear track as new information is fed in from one end. 
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the end of the computation we will, of course, have a good deal of unnecessary 
intermediate results filling shift registers. In earlier discussions ~z~ it was 
assumed that these shift registers would eventually have to be erased, to clear 
the computer for its next use, and that therefore this whole scheme served 
only to postpone the dissipation in time, rather than to avoid it. Unfortu- 
nately, this was an erroneous conclusion, resulting from the fact that we were 
considering "driven computers," as Bennett calls them. These are computers 
which always move forward from logical antecedents to logical consequences 
at a (roughly) predictable rate. Indeed, all real electronic computers are of 
this sort. But computers need not be "driven," they can be allowed to be 
physically reversible. Once we allow real physical reversibility then the 
unnecessary intermediate results saved in shift registers need not be erased. 
After arriving at the end of the computation we copy the desired results. We 
then let the computer run backward, and in this process the shift registers 
unwind and are cleared. Since the whole computation consists of steps each 
of which is physically and logically reversible, the computer will simply run 
backward to its original input state. Naturally, of course, the forward motion 
as well as the backward motion requires a little energy or driving force to 
overcome viscosities. These energies, however, can be very much smaller 
than kT  per logical step. 

Actual computing systems, however, typically use dissipative com- 
ponents, requiring energy dissipation not only for the forward motion, but 
simply to hold results. A long-standing speculation exists Cz2~ that, "...in the 
steady-state dissipative device the dissipation per switching event is at least 
as high as in the [conservative devices], and that this dissipation per switching 
event is supplemented by the steady-state dissipation." In the subsequent 
discussion we shall see that this may be somewhat too simple a viewpoint. 

The generalizations of the second law of thermodynamics which are the 
concern of the remainder of this paper result from the attempt to become 
more analytical about the speculation given above, by relating entropy 
changes in steady-state systems to heat exchanges with the reservoir. Unfor- 
tunately, at this time a complete characterization of the dissipative systems 
comparable to that existing for devices holding information without dissipa- 
tion does not exist. 

2. O U T L I N E  O F  T H E  T H E O R Y  

We are typically concerned with systems with one degree of freedom, 
such as the capacitance in the tunnel diode circuit of Fig. 1. This degree of 
freedom is connected to a circuit which in the steady state brings the capaci- 
tance to a state of preferred charge. There are also fluctuations in the circuit 
tending to drive the capacitor charge q away from its preferred value q0 �9 The 
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balance between the restoring forces and the fluctuations is typically represen- 
ted by a Fokker-Planck expression for the ensemble fluxjq along the q axis: 

jq = p(q)  vq - -  D(6p/~q)  (1) 

p is the probability distribution for ensemble members, Vq is the restoration 
velocity toward the nearby stable or metastable steady state, and D describes 
the diffusive motion of ensemble members. Thus D describes the tendency 
of ensemble members originally at the same value of q to separate from each 
other. The Fokker-Planck equation requires justification, which we will not 
provide, though it will turn out that our subsequent argument does not 
absolutely need to go back to the Fokker-Planck equation. In particular, 
Eq. (1) assumes, of course, that ensemble members make transitions only to 
nearby values of q. In the case of the tunnel diode the Fokker-Planck equation 
is validated in the original paper (s) on that device, and that discussion is 
supplemented in the appendix. Problems with the Fokker-Planck equation 
have been discussed in detail by van Kampen. (13) In fact, our tunnel diode 
circuits obey a master equation which cannot validly be approximated by a 
Fokker-Planck equation, except in the vicinity of a steady state. That, 
however, is where we shall really need the solution. 

There is another subtle question which concerns the detailed form of the 
Fokker-Planck equation. Is it as written in Eq. (1), or should the diffusion 
coefficient appear under the differentiation sign ? Both forms of  the diffusion 
current can actually be correct, and are used in the literature, but they 
correspond to, and require, different definitions for vq. This has been dis- 
cussed in detail in the appendix of Ref. 9 and also by Manning. (la) 

In one dimension Eq. (1) is trivially integrated to yield the steady-state 
distribution 

p = A exp ( f  v q d q / D )  (2) 

with a normalization constant A. The thermal equilibrium distribution 
function p ~ e - v / e r  can be regarded as a special case of Eq. (2), obtained by 
utilizing the Einstein relation in the form vq = - - ( D / k T ) ( d U / d q ) .  

The velocity of  restoration vq toward a preferred state q0 will go to zero at 
that state. The integral in Eq. (2) will therefore be a maximum at that point. 
It will fall off in either direction, as the restoration velocity vq ~ - - ~ ( q  - -  qo) 
increases in magnitude as we move away from qo �9 Thus if ~ and D are very 
slowly varying functions of  q over the range in which p is appreciable, then 
Eq. (2) becomes 

p = A exp[--a(q --  qo)2/2D] (3) 

The fact that = and D are actually not constants will give us a more asym- 
metric distribution function than shown in Eq. (3), and the problems caused 
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by such asymmetries are the main concern of Section 5 and 6. The energy U(q) 
stored in the system can be approximated over this same narrow range by 

U(q) = U(qo) + (q - -  qo) U' + �89 - -  qo) ~ U" (4) 

If  we once again neglect higher-order asymmetry, we can rewrite Eq. (3) 
in the form 

I I p -- A exp 2-D U" [U(q) -- U(qo) - -  (q - -  qo) U'] (5) 

Equation (5) is the thermal equilibrium distribution function for a system at 
a temperature k T u  = D U " / a  and with a fixed force U'(qo) applied to the 
system to displace it to q0 �9 Thus the distribution function for the dissipative 
system is characterized by an effective temperature. This temperature is 
determined by the noise sources and is proportional to D, and is not in general 
the ambient temperature unless we are dealing with noise sources obeying the 
Nyquist relationship. Our effective temperature is essentially the "noise 
temperature" of the electrical engineering literature. 

Since the steady-state distribution simulates an equilibrium distribution, 
we can assign it the same entropy 

S =  - - k f p l o g p d q  (6) 

assigned to the thermal equilibrium distribution. For  the thermal equilibrium 
distribution, as we slowly change parameters (e.g., q0 or T) we have 
dS  = d Q / T .  Now two of these quantities, d S  and T, also seem to characterize 
a shifting steady-state distribution, as we have just seen. This leaves us with 
the job of finding a proper interpretation for dQ in the steady-state case. 

For  subsequent use let us recast the relationship dS  = d Q / T  f o r  the 
equil ibrium case in an alternative form. From Eq. (6) we find 

8S = - -k  f (8p) log p dq (7) 

where we have now written 8 to indicate the small changes arising from the 
shifting state, to prevent confusion with the integration over dq. The term 
log p in the integrand on the rhs of Eq. (7) can be replaced by using 
p =- Z - l e  -a/~r, where Z = f e -zl/kT dq, and 

A = U -  U(qo) - -  (dU/dq)%(q - -  qo) (8) 

is the relative energy in the presence of the bias force, illustrated in  Fig. 3. 
Thus 

log p = log Z -~ - -  ( A / k T )  (9) 
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Fig. 3. The relative energy, in 
the presence of the bias force, 
about the preferred state. The 
figure intentionally emphasizes 
the possible asymmetry. 

When we substitute this expression into Eq. (7) log Z -1 drops out in the 
integration. Thus 

8S = (I/T) f 8p A(q) dq = (1/T)[8(U) -- (dU/dq)~o 8q0] (10) 

Here (U)  is the ensemble average of the energy. The term (dU/dq)% 8qo is just 
the energy change of the preferred state, i.e., the state at which dU/dq equals 
the applied force. We shall use UF to denote the excess of energy ( U )  over the 
energy at the preferred point U(q0), emphasizing that it is an energy asso- 
ciated with the fluctuations of the distribution. Then Eq. (10) can be written 

r S S  = 8U~ O1) 

Since Eq. (11) has been derived from the form of the distribution function 
without explicitly invoking the second law of thermodynamics, it should 
hold equally for the nonequilibrium case as long as the two distribution 
functions are really as close to each other as we have suggested. (The fact 
that they are really not that close is the reason for much of the subsequent 
discussion.) At this point, however, Eq. (11) is only a relationship between 
quantities characterizing a shifting distribution; it does not tell us anything 
about heat exchanges with the reservoir. 

In the equilibrium case that connection is made very easily through the 
first law of thermodynamics. As the point q0 is shifted the internal energy 
changes by 8(U).  The externally applied force supplies an energy (dU/dq)%Sqo. 
The difference between these two is 8UF (this difference is analogous to the 
more customary expression dU -- p dV), and this must come from the only 
other possible energy source, the thermal reservoir. Hence SUe = 8Q, and 
together with Eq. (11) this demonstrates T SS = 8Q for the equilibrium 
case. In the nonequilibrium case, however, we cannot simply invoke conser- 
vation of energy, in view of the background of steady-state dissipation. In 
the next section we shall attempt to remedy this shortcoming and supply the 
necessary relationship. 
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3. G E N E R A L I Z A T I O N  OF T H E  FIRST L A W  O F  
T H E R M O D Y N A M I C S  

The title of this section must be taken with a grain of salt. The first law 
does, of course, apply directly as it stands to dissipative systems. We are 
here instead referring to a generalization of 8Up = 3Q for the specific 
purposes of the last section. 

Conservation of energy, in its normal sense, does apply to the dissipa- 
tive system under consideration. Thus there is energy supplied externally, e.g., 
by batteries in the case of an electrical circuit. This must equal the sum of 
the energy dissipated in the same period and the change in stored energy. 
Thus 

f (power supplied) dt = f (heat dissipation) dt + ~U (12) 

Since this equation applies to every system, it applies also to ensemble 
averages. 

Now consider the macroscopic system without fluctuations, i.e., the 
system as characterized by ensemble averages for voltages and currents. The 
macroscopic circuit equations between these also satisfy the law of conserva- 
tion of energy. (If this is not considered an obvious fact, then a more detailed 
argument can be found in the original treatment, m ) This yields 

f (power supplied)o dt = f (heat dissipation)0 dt + 3Uo (13) 

where the subscript zero denotes the fact that these quantities are calculated 
in the usual macroscopic way from ensemble averages, e.g., heat dissipation 
in a resistor is now taken as ( i ) (V) ,  rather than as (iV) in Eq. (12). The term 
3U 0 in Eq. (13) is (dU/dq)(3q). Now if our steady-state distribution rigor- 
ously simulates a Boltzmann distribution, then (dU/dq) = (dU/dq)%, where 
q0 is the point at which p has a maximum. (We shall return to a discussion of 
the accuracy of the simulation in the next two sections.) In case it is not 
obvious to the reader that (dU/dq) = (dU/dq)% for the Boltzmann distribu- 
tion, this can be shown through a simple integration of f p(dU/dq) dq. The 
identification between ensemble averages and quantities obeying the macros- 
copic circuit equations only makes sense if the circuit equations have single- 
valued solutions, or if only one of several possible multivalued solutions is 
involved. If  in Fig. 1 solutions near A and C are both represented in the 
ensemble, then the ensemble averages correspond to averages over suitably 
weighted solutions of the circuit equations. I f  we are dealing with such a 
true steady state, where the various branches are in equilibrium with each 
other, our equations are still applicable, but their significance is not yet 
entirely clear. 
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Now take the difference between Eqs. (12) and (13). The power supply 
terms will cancel exactly, since the voltage supply (or current supply, if 
preferred) is not a fluctuating quantity. The result is then 

(energy given up by reservoir) 

-- (energy given up by reservoir)0 = 8UF (14) 

Here 3UF is (3U) -- (dU/dq)(Sq). The replacement of (dU/dq) by (dU/dq)% 
is justified only if the distribution is rigorously a Boltzmann distribution. 
Hereafter we will replace the phrase "energy given up by reservoir" by 8Q. 
The energies given up by the reservoir invoked in Eq. (14) have the same 
magnitude, but differ in sign, from the heat dissipation terms invoked in 
Eqs. (12) and (13). Note that for an unmodulated steady state SUe - 0, and 
therefore (3Q) = (~Q)0 �9 This means that for such a genuine steady state, 
not subject to any shift, the heat dissipation calculated in a macroscopic way 
by multiplying ensemble averages is in fact the exact heat dissipation, and no 
extra term has to be added to allow for fluctuations. 

We must now emphasize a point which was unfortunately missed in the 
original treatment, a) Equation (14) when applied to the states of a system 
subject to a change with time refers to the behavior of the distribution func- 
tion for that time-dependent system. If the time-dependent modulation of 
system parameters is slow, then the time-dependent distribution functions 
will be close to those of the steady-state system, but they will not be identical. 
Consider for example the circuit of Fig. 1 in the presence of a slowly rising 
battery voltage ER �9 This means that the charge q on the capacitor is also 
rising slowly. This charging current dq/dt must be supplied by a difference 
between the resistive current and the diode current. Thus these currents are 
perturbed away from their steady-state values, and the associated energy 
dissipation in each component is also perturbed by amounts proportional to 
the changes in current, and therefore proportional to dEB/dt. (If our modu- 
lated circuit remains close to thermal equilibrium, or alternatively if all the 
resistances are linear, then the change in total circuit dissipation can be shown 
to be second order in dE~/dt. We shall, however, continue to keep the more 
general case in mind.) Thus the change in energy dissipation is small if the 
rate of modulation is slow, but the time over which these perturbations exist 
increases inversely with the modulation rate. Therefore the integrated change 
in power dissipation cannot be neglected. 

The distribution functions in the presence of the modulation will 
hereafter be called the "lagging" states, and will be denoted with a subscript l. 
We use the word "lagging" since these are states in which the actual distribu- 
tion function lags behind the steady-state distribution function for capacitive 
charge defined by the currently valid, externally imposed circuit parameters. 
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Such lagging distribution functions caught in slowly shifting potential wells 
have been studied in an erlier paper (zS) oriented to very different purposes. 
In contrast to the lagging states, the subscript ss will denote the exact distribu- 
tion function of the steady-state system. In the presence of the time-depen- 
dent modulation ss will denote a sequence of distribution functions obtained 
by selecting at each instant of time the exact steady-state distribution function 
for the modulation parameter prevailing at that exact instant. 

In the case of the dissipative terms we have stressed that small dissipation 
differences between the lagging state and the steady state can be integrated 
over a long time, and therefore cannot be neglected. The terms (3U)  and 
(dU/dq)@q) are simpler. As the modulation rate is decreased and the two 
kinds of distribution function approach each other we can approximate 

(3U)z -- (dU/dq)~ (3q)~ = (3U)ss --  (dU/dq)ss (Sq)ss = 3Ur,ss (15) 

From Eq. (11) we know, however, that 3Uv.ss is TN 3S, where TN is the 
temperature describing the steady-state distribution function. Thus Eq. (14) 
becomes [invoking the definition of gQ that follows Eq. (14)] 

@Q)~ - 3Q0,~ = TN 3S (16) 

The entropy change is now related to the energy taken from the reservoir, 
corrected for the energy exchange expected from the macroscopic circuit 
equations. Reference 1 labeled this difference SQv and derived this relation- 
ship correctly, but in some of its verbal interpretation erred, since at that 
time adequate distinction between the " l "  states and the "ss" states was not 
made. We shall elaborate on this important point in the next section. 

4. REVERSIBLE A N D  IRREVERSIBLE H E A T  F L O W  

For the purposes of this section we will recast our basic theorem, 
Eq. (16). We have stressed that 

3Q0.ss - SQ0.z = 3Wz.ss (17) 

does not vanish, but approaches a fixed limit, called ~ W~,ss, as the modulation 
rate is decreased. With this notation we can rewrite Eq. (16) as 

(~Q),  = 3 W,,ss q- TN 3S -}- 8Qo,ss (18) 

Thus the actual heat flow in the presence of the modulation consists, first of 
all, of  the last rhs term, i.e., the dissipation predicted from the sequence of 
the steady states defined by the time dependence of the modulation. This is 
an irreversible term. In other words, if the modulation takes our system from 



Entropy Changes for Steady-State Fluctuations 363 

state A to state B and back again, this term has the same sign and magnitude. 
By contrast, the other two terms are reversible. Part of the reversible heat 
exchange comes from S W~,ss, a simple macroscopic correction allowing for 
the fact that the modulated system has a different dissipation. The sign of this 
term, however, will depend on the direction in which the system is changing. 
Finally, there is the TN SS term, telling us that there is an additional reversible 
heat change which, as in equilibrium, depends on the increase or decrease of  
the spread of the distribution function. 

5. T H E  D E V I A T I O N  F R O H  T H E  E X A C T  B O L T Z M A N N  
D J S T R I B U T I O N  

In Section 3 we assumed that the distribution function for the steady 
state was identical to that obtainable in a thermal equilibrium situation. There 
is clearly an approximation here. Typically, for example, v~ and D as invoked 
in Eq. (2) will both depend on q. Their ratio, in the range of fluctuations, 
need not correspond to the exact value, 

vq _ tz V U  _ V U  (19) 
D D kTN 

predicted from the shape of the potential, and the effective temperature TN 
which characterizes the behavior right at the center of  the distribution. In 
other words, the potential U can have asymmetry, as indicated in Fig. 3, and 
similarly the distribution given by Eq. (2) can have asymmetry, and these 
deviations need not be linked to each other. In this section we want to show 
that as the system under consideration becomes larger and the fluctuations 
involved become narrower the relative error involved in equating the two 
distributions becomes negligible. 

An equilibrium distribution is of  the form O ~'~ e-~/kr, where A is the 
relative energy, in the presence of the applied force, as given by Eq. (8) and 
illustrated in Fig. 3. In the steady-state system p can deviate from e-~/krw, 
e.g., increase above it for q > qo, and drop below it for q < q0 �9 We have 
presumably chosen TN correctly to describe the variation correctly right at 
q0, to second order in (q -- qo), and are therefore interested in the effects of  
a3, etc., in the following expression: 

p ~ [exp(--A/kTN)] exp[a3(q -- qo) 3 -k a4(q -- qo) a + ""] (20) 

The dominant term will presumably be aa and we shall look at its role in 
some detail. Since A varies quadratically, at first, with q about q0, we can 
replace (q -- qo) in Eq. (20) by Al l  2, yielding 

p ~-~ [exp(--A/kTN)] exp[-- f i (A/kTN) ~/2] (21) 
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to lowest order in /3, i.e., to lowest order in the deviations from a strict 
Boltzmann distribution. Let us consider the behavior of/3 as the system is 
increased in size, i.e., as we go to the "thermodynamic limit." Our discussion 
will invoke some of the specifics of electrical circuits, but hopefully will apply 
more generally. Admittedly, the real range of applicability of our arguments 
is uncertain. 

We approach the "thermodynamic limit" by imagining the typical sort 
of circuit we have been considering to be built up by replacing each initial 
circuit element by a number of  identical elements in parallel. Let n denote 
the number of elements in parallel. Thus we can imagine the value of  the load 
resistance R in Fig. 1 to be divided by n, similarly we have n tunnel diodes in 
parallel, but all across the unchanged battery voltage EB �9 

The dynamics of the system, e.g., the variation of v, and D in Eq. (2) 
with q, is essentially determined by the intensive parameter, i.e., by the 
voltage, which controls the physical details of the tunneling situation. Thus 
the relaxation rate, ( q -  qo) -z dq/dt, at a given voltage away from the 
preferred voltage must be independent of n. The diffusion coefficient D des- 
cribes the buildup of charge fluctuations, (q - -  qo) 2 ~ 2Dt, that would occur 
in the absence of a restoring velocity. Each of the n parallel circuit elements 
contributes independently to these mean-square fluctuations, and thus D is 
proportional to n. Thus 

dq=:  vo D 

(l/n) 

1 @ A n  
(q - -  qo) ~ V  d V  q - -  qo dt 

n o tl n 

(22) 

where the arrows indicate variations with n. For a given voltage deviation 
.[ (vq/D)dq thus varies as n. Furthermore, since q -  q0 is approximately 
proportional to the voltage deviation and the remaining quantities are 
approximately constant over the range of integration, the integral varies as 
(V -- V0) 2 for a fixed value ofn. Thus, letting 

V - -  Vo = A V, p ~ exp[- -Cn(A V)~]. 

The range of voltage fluctuations is therefore proportional to 1/C~. The 
range of charge fluctuations q -  q0 is proportional to both the voltage 
fluctuations and the size of the capacitor. Thus it is proportional to ~/~. This 
makes the range of A, which is proportional to Aq A V, independent of n, and 
therefore--not surprisingly--TN is also independent of n. To understand 
the role of the modifying multiplier exp[--/3(A/kTN)3/2], consider Eq. (22) and 
now let one or more of the quantities, such as D, for example, vary as 

l I D  ,-.., (1/D0)[1 + ~ ( V -  V0)l (23) 
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where ~? is independent of  n. This then gives us an additional term in the 
integral which varies as ~qn A V 3 and can be identified with /3(A/kT)~/~. 

Equating these leads to the conclusion that/3 ~-~ n -l/2. In the limit of  large n 
the steady-state distribution therefore approaches the Boltzmann distribution. 

While this essentially completes our proof, we shall in the next section 
examine the fact that the steady-state distribution does differ from the 
Boltzmann distribution. The surprising result is as follows: I f  the deviation 
is taken into account to first order in/3, then the relationship TN 3S ~ ~Q~ 
is still valid. 

Equation (21), accompanied by the statement that/3 ~ 1, is the basic 
assumption needed for our theorem, rather than the Fokker-Planck equation. 
Equation (21) is more general, e.g., it applies directly to a ladder of discrete 
levels, as discussed in the appendix. It can also be applied to situations in 

I~,A xB,, _�82 
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Fig. 4. (a) Bistable tunnel diode circuit, with associated 
tunnel diode capacitances. (b) Solid fine is the cmxent 
through the lower tunnel diode as a function of the 
voltage Vat the junction between the two diodes. Dashed 
line gives current through the upper diode as a function 
of the same midpoint voltage V. (c) Corresponding 
situation for a lower battery voltage E. 
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which the random jumps are not small enough to be characterized by a 
diffusion term. 

We have pointed out that if the system is large enough and the fluctua- 
tions narrow enough, then the dissipative system and the equilibrium system 
both become narrow and the distribution functions very similar. The size of 
the system, i.e., the multiplier n required for this, is a function of the range of 
fluctuations existing before the circuit elements are placed in parallel. Thus if 
either the equilibrium system or the dissipative system is near a critical point 
separating a range of bistability from a range of monostability, then a 
particular large multiplier is required. Alternatively, a system of  f i xed  size 
brought close to a critical point will reach a stage where the distribution 
function similarity will break down. (A system with a continuous transition 
between monostability and bistability is exhibited in Fig. 4.) This is un- 
fortunate since the transition through the critical point is an essential part 
of some otherwise particularly easily analyzed data processing schemes. (16) 

6. EFFECT O F  D E V I A T I O N S  

In Eq. (14) we showed that 

( S Q ) , -  3Q0,~ = SQF = @ U )  --  ( d g / d q ) @ q )  

Using Eq. (8) we can rewrite this, without approximation, as 

3QF -~ ( 3 U )  --  (dU/dq)qo@q) --  ( d A / d q ) @ q )  

We want to compare this to 

(24) 

(25) 

T N ~S = - - k T N  f ~p log p (26) 

which can be rewritten, using Eq. (21), as 

3S • - - k T u  f Sp[--(A/KTN) --  f i(A/kTN) ~/~1 dq (27) Tn 

Replacing A in Eq. (27) through the use of Eq. (8), this becomes 

3S = ( ~ U )  --  (dU/dq)qo(Sq) + flkTN f 8p(A/kTu)3/Z dq (28) Tu 

In thermal equilibrium/3 = 0, and the final rhs terms of both Eqs. (25) and 
(28) vanish, and TN ~S ~- SQF �9 We now want to recognize, however, that 
in the dissipative steady state as the system becomes large/3 becomes small, 
but is nonvanishing. Therefore in comparing the final rhs terms of Eqs. (25) 
and (28), we will ignore higher-order corrections in/3. 
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Consider first the (dA/dq) term, from Eq. (25): 

[ dA A /' A ]./z 
W exp -- ~ exp --/3 \--k--T--NN] dq dA d 

A [ A ,"/~ (29) 
(-d-~-) = f exp - ~ exp - fi i--kT--U-N) dq 

To first order in fl, we can take the normalization integral in the rhs de- 
nominator simply as Z = f e-~/kr dq. In the r/as numerator of Eq. (29) we 
take 

exp[--fl(A/kTN) 3/2] =-- 1 -- 3(Alkr~) ~/2 (30) 

Only the fi term from (30) contributes to the integral, in the numerator of 
Eq. (29), leaving 

dA dA ( A ]z/~ e -'j/krN fikTN 
(-d--q-)= --fi~ f ~ \--k-~N' dq- -  Z 2 f  o e-~xa/2dx 

(31) 

The definite integral in Eq. (31) is a gamma function, and therefore the 
final rhs term of Eq. (25) becomes 

--(dA/dq)(aq) = (/3kTN/Z) 2/~(~) f 8p q dq (32) 

Consider now the other term involved in our comparison, the last rhs 
term of Eq. (28), 

fikTu f 8p(A/kTu) 3/~ dq (33) 

To zeroth order in /3 we have p -= Z -1 e-~/krN. The change 8p has two 
sources. First of all the distribution can be shifted in space; additionally its 
width, i.e., temperature, can change. The latter kind of change is an even 
function of All 2, and does not yield a net contribution to the integral in (33). 
A displacement of the distribution in q by 3q0 gives 

~p 1 e_J/krN ~A (34) 3 p = - - q 0 ~ = ~ q 0 ~  Oq 

If this is entered into (33), we find 

f; /3 3qo(1/Z) e-'~/krN(A/kTN)S/~(eA/Oq) dq = fikrNZ-Z2F(]) ~qo (35) 

which is equivalent to Eq. (32). Thus to first order in/3 these terms which 
represent the effect of deviations from the Boltzmann distribution still obey 
T~ 8S = ~QF. 

822]9[4-7 



368 R. Landauer 

It is perhaps also relevant to discuss the size of these terms. The main 
terms in Eq. (25) and Eq. (28), e.g., (3U) ,  vary as n (n is the number of 
circuit elements in parallel, as in Section 5) if the shift takes us through a fixed 
voltage range SV. The terms in (32) and (35) vary as/3Z -1 3qo as n is varied. 
/3 varies as (1/n)I/2, as shown in Section 5. Z varies as the range in q over 
which the Boltzmann exponential is integrated, i.e., as n~/2. 3qo is the shift in 
charge, for a fixed voltage shift, and therefore varies as n. Thus /3Z -~ 3q0 
varies as n o and is therefore small, for large n, compared to the main 
terms. 

7. O V E R V I E W  

Our basic theorem, Eqs. (16) and (18), has been proven so far for the 
case of one degree of freedom. A circuit with several degrees of freedom is 
more complex. There we will have to contend with the fact that normal 
coordinates can be defined only locally, in the general nonlinear case, through 
the quadratic parts of the energy variation about a particular point of opera- 
tion. The local normal coordinates will change their identity as a point of  
operation is shifted. An appreciably simpler case exists, however, if the total 
energy can be written as a sum of terms, not necessarily quadratic, one for 
each of several normal coordinates, which in turn preserve their identity as 
the point of operation is shifted. This is the case in which we will have normal 
coordinates q~ and associated forces OU/eq~ which obey fixed linear relation- 
ships to, respectively the charge flow and the voltages at the terminals inter- 
facing the dissipative network. This case includes two important subcases. 
One is the case where the reactances in the circuit are all linear. The other is 
where the reactances are all separate two-terminal devices, and are coupled 
to each other only through the dissipative network. 

If  we have fixed normal coordinates, we need only assume a distribution 
of the form (21) for each normal coordinate, with a separate temperature for 
each normal coordinate. We need not assume that the distribution functions 
for the various normal coordinates represent uncorrelated probabilities, and 
need not assume detailed balancing. In that case the discussion in Section 6 
applies immediately to each normal coordinate, and TN dS is now replaced in 
Eqs. (16) and (18) by a sum of  terms Ts~ dS~, one for each normal coordinate. 

Even in the cases where Eqs. (16) and (18) or their obvious generaliza- 
tion just discussed do not apply, there is a more general content to our 
discussion which we want to reemphasize here. The most delicate aspects 
come from our attempt to show 3UF ----- Tu SS. Equation (18) can, however, 
be written in the more generally valid form 

(3Q)t  = 3w~.ss + 3uF -1- (3Q)0.ss (36) 
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Again we can point out that the first two terms on the rhs represent reversible 
heat flow, while the final term does not. Furthermore, on the right hand side 
only the term 8UF is sensitive to the details of  distribution functions. 
Equation (36) does not require assumptions about narrow fluctuations or 
about a single effective temperature. In connection with Eq. (36) it is worth 
stressing that while 8Wr,ss and 8UF are reversible, they are not perfect 
differentials. The heat flow is reversed exactly only if the return path takes us 
through the same sequence of  states as the forward path. If, however, we 
traverse a loop by modulating two circuit parameters independently, then 
the contributions from the various sides of the loop do not sum to zero. In 
the case of 3U~ this follows immediately from the fact that 8U~ is the gener- 
alization of d U - - p  dV for the equilibrium case. In the case of  
~3 W~,ss examples can easily be constructed to show that in general 

~ SWz.~ # O. 

The temperature TN is typically (but not necessarily) higher than the 
ambient temperature. Thus a fluctuational entropy gain dS = dQr/TN can be 
less than the entropy taken from the reservoir at a lower temperature. This 
is, however, not a violation of  the second law since these entropy changes 
take place against a background of steady-state entropy generation. 

A P P E N D I X .  DETAILS  OF T U N N E L  D I O D E  C I R C U I T S  

Consider a circuit as shown in Fig. 4. The main point is that the resistor 
of  Fig. 1 has been replaced by a tunnel diode. (We could equally well consider 
its replacement by any other device which passes one electron at a time.) The 
stochastic variable is now the charge imbalance between the two capacitors, 
i.e., the net charge which has been introduced into the junction between the 
two capacitors. This must change by one electron at a time, through tunneling 
via either device. We thus have a ladder of  possible charge levels, as shown in 
Fig. 5, and must go up and down this ladder one step at a time. In the steady 
state if the flow vanishes as we go far along the ladder, this necessitates 

Fig. 5. 
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A ladder of states with transitions allowed only between adjacent levels. 
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detailed balance, and therefore the analogies to an equilibrium distribution 
function Ca,4) are possible. Furthermore, the analysis of  Section 4 of  Ref. 8 
shows that if the tunnel diode has a large enough area, then the continuum 
approximation of Eq. (2) becomes accurate. 

I f  we now return to the circuit of  Fig. 1, we depart  f rom detailed balance, 
or at least we lose it in its most literal and rigorous sense. For  simplicity 
consider a heavily forward-biased tunnel diode, for example, near its current 
minimum. The electronic motion there is almost entirely in the direction of 
net current flow, with very little reverse tunneling f rom the valence band to 
the conduction band. Thus the diode current there only discharges the 
capacitance; the charging current must come through the resistor. The diode 
discharge current, however, still involves the loss of  one electron at a time, 
whereas in the resistor the elementary stochastic event is the motion of an 
electron through a mean free path, and typically corresponds to a charge 
change at the capacitor of much less than one electron. Thus in the steady 
state the capacitive discharge of one electron at a time is compensated by a 
trickle of much smaller charge elements through the resistor. Thus rigorous 
detailed balancing does not exist. I t  is therefore not necessary to go to two 
dimensions to find an example of  the circulation effects which accompany 
deviation f rom detailed balance. Of  course, if all the elementary transitions 
in the system, including the jump of one whole electron at a time, take us 
between states which are close to each other measured on the scale of  the 
distribution function variation, then we can still invoke the Fokker-Planck 
equation as a good approximation. 

There may be some squeamishness about  representing a system with 
discrete states as typified in Fig. 4 through a continuous distribution function 
p(q). In that case we can consider a closely related system in which one or 
both of the electron passage devices are placed in parallel with large ordinary 
resistors. The resistors are chosen to be large enough so as not to influence 
the current flow appreciably. At  the same time they do occasionally permit 
charge transitions of  much less than one electron at a time, and thereby 
serve to give us a whole series of  ladders, all with very similar kinetics, but 
resulting in a genuinely continuous density distribution p(q). 
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